Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycologia ; 116(2): 258-266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232343

RESUMO

Fusarium spp. has emerged as an opportunistic etiological agent with clinical manifestations varying from localized infections to deep-seated systemic disease. It is also a phytopathogen of economic impact. There are few reports on the species diversity of this genus, and no comprehensive studies on the epidemiology nor the antifungal susceptibility of Fusarium in Mexico. The present multicentric study aims to shed light on the species distribution and antifungal susceptibility patterns of 116 strains of Fusarium isolated from clinical and environmental samples. Isolates were identified by standard phenotypic characteristics and by sequencing of the ITS (internal transcribed spacer), TEF1 (translation elongation factor 1-α), RPB2 (RNA polymerase II core subunit), and/or CAM1 (calmodulin) regions. Susceptibility tests were carried out against 15 antifungals of clinical and agricultural use. Regarding Fusarium distribution, we identified 27 species belonging to eight different species complexes. The most frequently isolated species for both clinical and environmental samples were F. falciforme (34%), F. oxysporum sensu stricto (12%), F. keratoplasticum (8%), and F. solani sensu stricto (8%). All Fusarium isolates showed minimum inhibitory concentrations (MICs) equal to or above the maximum concentration evaluated for fluconazole, 5-fluocytosine, caspofungin, micafungin, and anidulafungin. All isolates had a MIC of ≤16 µg/mL for voriconazole, with a mode of 4 µg/mL. F. verticillioides appeared to be the most susceptible to all antifungals tested.


Assuntos
Antifúngicos , Fusarium , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , México , Testes de Sensibilidade Microbiana
2.
Curr Trop Med Rep ; 8(1): 6-17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500877

RESUMO

Purpose of Review: Infectious diseases represent up to 12% of all deaths in people with diabetes mellitus (DM). The development and progression of DM generate a chronic inflammatory state with unique characteristics that have been exploited by some pathogens; one of them is Rhizopus spp., a fungus considered the causative agent of mucormycosis. This disease has a poor prognosis with high mortality rates, and the apparition of resistant isolates each year has become a worrying concern. DM is an actual and continuing health problem, and for that reason, it is of foremost importance to study the pathogenesis of mucormycosis to generate new prevention and treatment strategies. Recent Findings: The worldwide incidence of mucormycosis has increased in recent years. The pathogenic mechanisms and factors identified in Rhizopus spp. are the cell wall, spore germination, proteins, and enzymes related to iron sequestration, CotH fungal protein, positive regulation of the GRP78 cell receptor, and immune evasion due to survival within phagocytes, among others. The physiopathology of DM offers favorable conditions for the successful replication of Rhizopus spp. Summary: The main reason for increase of incidence of mucormycosis caused by Rhizopus spp. has been associated with the rise of worldwide prevalence of DM. Knowing the fungal pathogenic mechanisms as well as the relationships between Rhizopus with the microenvironment found in the human body will undoubtedly help generate better antifungals to enhance treatment outcomes. Nowadays, some strategies to combat the fungus are based on the knowledge of its proteins, cellular interactions, and iron metabolism.

3.
Exp Ther Med ; 18(4): 3125-3138, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31572553

RESUMO

Aminoguanidine (AG) inhibits advanced glycation end products (AGEs) and advanced oxidation protein products (AOPP) accumulated as a result of excessive oxidative stress in diabetes. However, the molecular mechanism by which AG reduces AGE-associated damage in diabetes is not well understood. Thus, we investigated whether AG supplementation mitigates oxidative-associated cardiac fibrosis in rats with type 2 diabetes mellitus (T2DM). Forty-five male Wistar rats were divided into three groups: Control, T2DM and T2DM+AG. Rats were fed with a high-fat, high-carbohydrate diet (HFCD) for 2 weeks and rendered diabetic using low-dose streptozotocin (STZ) (20 mg/kg), and one group was treated with AG (20 mg/kg) up to 25 weeks. In vitro experiments were performed in primary rat myofibroblasts to confirm the antioxidant and antifibrotic effects of AG and to determine if blocking the receptor for AGEs (RAGE) prevents the fibrogenic response in myofibroblasts. Diabetic rats exhibited an increase in cardiac fibrosis resulting from HFCD and STZ injections. By contrast, AG treatment significantly reduced cardiac fibrosis, α-smooth muscle actin (αSMA) and oxidative-associated Nox4 and Nos2 mRNA expression. In vitro challenge of myofibroblasts with AG under T2DM conditions reduced intra- and extracellular collagen type I expression and Pdgfb, Tgfß1 and Col1a1 mRNAs, albeit with similar expression of Tnfα and Il6 mRNAs. This was accompanied by reduced phosphorylation of ERK1/2 and SMAD2/3 but not of AKT1/2/3 and STAT pathways. RAGE blockade further attenuated collagen type I expression in AG-treated myofibroblasts. Thus, AG reduces oxidative stress-associated cardiac fibrosis by reducing pERK1/2, pSMAD2/3 and collagen type I expression via AGE/RAGE signaling in T2DM.

4.
PeerJ ; 7: e6430, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834181

RESUMO

BACKGROUND: The protozoan Giardia lamblia is the causal agent of giardiasis, one of the main diarrheal infections worldwide. Drug resistance to common antigiardial agents and incidence of treatment failures have increased in recent years. Therefore, the search for new molecular targets for drugs against Giardia infection is essential. In protozoa, ionic channels have roles in their life cycle, growth, and stress response. Thus, they are promising targets for drug design. The strategy of ligand-protein docking has demonstrated a great potential in the discovery of new targets and structure-based drug design studies. METHODS: In this work, we identify and characterize a new potassium channel, GiK, in the genome of Giardia lamblia. Characterization was performed in silico. Because its crystallographic structure remains unresolved, homology modeling was used to construct the three-dimensional model for the pore domain of GiK. The docking virtual screening approach was employed to determine whether GiK is a good target for potassium channel blockers. RESULTS: The GiK sequence showed 24-50% identity and 50-90% positivity with 21 different types of potassium channels. The quality assessment and validation parameters indicated the reliability of the modeled structure of GiK. We identified 110 potassium channel blockers exhibiting high affinity toward GiK. A total of 39 of these drugs bind in three specific regions. DISCUSSION: The GiK pore signature sequence is related to the small conductance calcium-activated potassium channels (SKCa). The predicted binding of 110 potassium blockers to GiK makes this protein an attractive target for biological testing to evaluate its role in the life cycle of Giardia lamblia and potential candidate for the design of novel antigiardial drugs.

5.
Nutr Hosp ; 35(6): 1394-1400, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30525855

RESUMO

BACKGROUND: patients with cervical cancer (CC) receiving chemotherapy and radiotherapy have several gastrointestinal adverse effects. OBJECTIVE: to evaluate the effect of dietary symbiotic supplementation on fecal calprotectin (FCP), bacterial DNA levels, and gastrointestinal adverse effects in patients with CC. METHODS: clinical, controlled, randomized, double-blind trial. Patients consumed symbiotics or placebo three times a day for seven weeks. FCP was assessed by Elisa method. DNA from probiotic and pathogenic bacteria were determined by quantitative real-time polymerase chain reaction. Diarrheal evacuations were evaluated with the Bristol stool form scale and nausea and vomiting were measured using the scale of the National Institute of Cancerology of the United States. RESULTS: after a seven-week treatment, FCP concentration was lower in the symbiotic group compared to the control group (p < 0.001). Stool consistency in the placebo and symbiotic groups was similar at baseline. A significant improvement in stool consistency was obtained in both groups at the end of the intervention (p < 0.001). The concentrations and total proportions of the probiotic and pathogenic bacteria were similar in both groups. Nausea significantly diminished in both groups (p < 0.001) at the end of the trial. Furthermore, the symbiotic group had a statistically significant decrease in the frequency and intensity of vomiting when compared to the control group (p < 0.001). CONCLUSIONS: the symbiotic treatment decreases significantly the FCP levels and the frequency and intensity of vomiting in patients with CC.


Assuntos
Fezes/química , Fezes/microbiologia , Complexo Antígeno L1 Leucocitário/análise , Prebióticos/administração & dosagem , Probióticos/administração & dosagem , Neoplasias do Colo do Útero/terapia , Adulto , Antineoplásicos/efeitos adversos , Bifidobacterium/genética , DNA Bacteriano/análise , Suplementos Nutricionais , Método Duplo-Cego , Escherichia coli/genética , Feminino , Gastroenteropatias/etiologia , Gastroenteropatias/prevenção & controle , Humanos , Inflamação/etiologia , Inflamação/prevenção & controle , Lactobacillales/genética , Pessoa de Meia-Idade , Placebos , Radioterapia/efeitos adversos , Salmonella/genética , Neoplasias do Colo do Útero/complicações
6.
J Pharm Pharmacol ; 70(3): 426-433, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29411390

RESUMO

OBJECTIVES: This study was undertaken to investigate the amoebicidal potential of curcumin on Entamoeba histolytica, as well as its synergistic effect with metronidazole. METHODS: Entamoeba histolytica trophozoites were exposed to 100, 200 and 300 µm of curcumin, for 6, 12 and 24 h. Consequently, the viability of cells was determined by trypan blue exclusion test. All specimens were further analysed by scanning electron microscopy. For drug combination experiment, the Chou-Talalay method was used. KEY FINDINGS: Curcumin affected the growth and cell viability in a time- and dose-dependent manner. The higher inhibitory effects were observed with 300 µm at 24 h; 65.5% of growth inhibition and only 28.8% of trophozoites were viable. Additionally, curcumin also altered adhesion and the morphology of the trophozoites. Scanning electron microscopy revealed treated trophozoites with damages on the membrane, size alterations and parasites with loss of cellular integrity. In addition, the combination of curcumin + metronidazole exhibited a synergistic effect; the activity of both drugs was improved. CONCLUSIONS: This is the first report evaluating the effectiveness of curcumin against E. histolytica. Our results suggest that CUR could be considered for evaluation in future pharmacological studies as a promising amoebicidal agent or as complementary therapy.


Assuntos
Curcumina/farmacologia , Entamoeba histolytica/efeitos dos fármacos , Entamoeba histolytica/crescimento & desenvolvimento , Trofozoítos/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Metronidazol/farmacologia , Testes de Sensibilidade Parasitária , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...